文章编号: 0253-2239(2010)09-2696-07

X 射线长组合折射透镜的理论和实验研究

乐 孜 纯¹ 董 文¹ 刘 魏¹ 张 明¹ 全 必 胜¹ 梁 静 秋² 朱 佩 平³ 伊 福 廷³ 黄 万 霞³ (¹浙江工业大学理学院,浙江 杭州 310023;²中国科学院长春光学精密机械与物理研究所,吉林 长春 130033 ³中国科学院高能物理研究所,北京 100080

摘要 结合矩阵光学方法与衍射理论,得到研究 X 射线长组合折射透镜光学性能(包括焦斑尺寸、有效光束半径和 强度增益等)的理论方法。设计并采用 LIGA 技术实际制作了顶点曲率半径 50 μm 的抛物面型 PMMA 材料长 X 射线组合折射透镜,在北京同步辐射装置(BSRF)的形貌站(4 W,1 A)对其在 8 keV 时的聚焦性能进行了实际测 试。给出了模拟计算和实测结果,并进行了分析讨论,实测结果显示了良好的聚焦效果,理论与实验结果基本吻合。 关键词 光学器件;X 射线长组合折射透镜;薄透镜近似;X 射线聚焦性能;同步辐射 中图分类号 O434.19 文献标识码 A doi: 10.3788/AOS20103009.2696

Theoretical and Experimental Study of Extremely Long Compound Refractive X-Ray Lenses

Le Zichun¹ Dong Wen¹ Liu Wei¹ Zhang Ming¹ Quan Bisheng¹ Liang Jingqiu² Zhu Peiping³ Yi Futing³ Huang Wanxia³

 ¹ College of Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
 ² Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China

³ Institute of High-Energy Physics, Chinese Academy of Sciences, Beijing 100080, China

Abstract An accurate theoretical method based on matrix optics and diffraction theory is developed for predicting the performance of the extremely long compound refractive X-ray lens. The size of focus, effective aperture of focusing X-ray beam and the intensity gain in focus are derived. Then several PMMA extremely long parabolic compound refractive X-ray lenses with the curvature radius of 50 μ m are fabricated by means of deep X-ray lithography. Finally, the focusing performances of the PMMA extremely long parabolic compound refractive X-ray lenses are measured and analyzed under 8 keV monochromatic on the 4 W, 1 A beamline of Beijing synchrotron radiation facility (BSRF). According to the experimental results, it is shown that the PMMA extremely long parabolic compound refractive X-ray lenses promise a good focusing performance under hard X-rays.

Key words optical devices; extremely long compound refractive X-ray lens; thin lens approximations; X-ray focusing; synchrontron

1 引 言

X 射线组合折射透镜是 Snigirev^[1]在 1996 年 提出的一种新型 X 射线光学器件,特别适用于硬 X 射线波段的聚焦与成像,在 X 射线探测和诊断技 术^[2~4]领域有广泛应用前景。它由多片双凹或平凹 折射单元组成,折射单元的个数一般为几十至几百 个。最近几年,X 射线组合折射透镜在设计理论与 制作技术方面均取得了长足进展。在透镜结构方 面,除最初采用的球面透镜^[1,5],已出现抛物面型^[6]、 锯齿状^[7~8]、Kinoform 型^[9]、沙漏状^[10,11]等多种结 构的 X 射线组合折射透镜。在制作技术方面,也由 最初的以精密钻孔为主体的精密机械加工技术,发

收稿日期: 2009-11-12; 收到修改稿日期: 2009-12-15

基金项目:国家自然科学基金(60672014)、浙江省自然科学基金杰出青年团队(R107377)和北京正负电子对撞机国家实验室基金(SR-06056)资助课题。

作者简介:乐孜孜(1965--),女,博士,教授,主要从事 X 射线光学器件和系统等方面的研究。E-mail: lzc@zjut.edu.cn

展为如今的以 LIGA(深度 X 射线光刻、微电铸与微 成型)技术为主体的现代微细加工技术^[12]。因为抛 物面型 X 射线组合折射透镜能够消球差且制作工 艺较易实现,所以该面型结构是目前制作 X 射线组 合折射透镜时采用最多的结构,本文也采用抛物面 型 X 射线组合折射透镜进行了 X 射线微束聚焦的 研究,并拟将其应用于高分辨率 X 射线成像方面。

基于制作工艺以及 X 射线辐射能量损耗方面 的考虑,X射线组合折射透镜中折射单元的曲率半 径不可能制作得太小,而透镜材料对 X 射线的折射 作用又比较弱,为了使 X 射线组合折射透镜的焦距 减小至可以接受的范围,折射单元的个数必须比较 多,一般为几百个。为了研究上的方便,目前大部分 文献均把 X 射线组合折射透镜看作薄透镜,忽略 X 射线组合折射透镜的厚度对其光学性能的影响。理 论上,当X射线组合折射透镜的长度与其焦距可以 相比拟(定义为X射线长组合折射透镜)时,其各个 性能参数与薄透镜近似下的情形有所不同,个别参 数甚至有显著差异。而在实验研究中发现,当X射 线组合折射透镜的长度与其焦距为同一数量级时, 基于薄透镜近似方法得出的理论结果已经很难被实 验研究所借鉴。然而,由于 X 射线为不可见光、而 且对人体有辐射损伤,因此更需要尽可能精确且充 分的理论结果来辅助 X 射线组合折射透镜的实验 研究。

Snigireva 等^[13]采用精密机械模压技术制作了 铝材料二维长 X 射线组合透镜,研究了其在 X 射线 辐射能量为 20~30 keV 时的聚焦性能。与文献 [13]的理论方法不同,本文结合矩阵光学与衍射理 论,推导出 X 射线长组合折射透镜的焦斑尺寸、有 效光束半径、强度增益等理论结果,该理论方法可以 处理任意长度(含任意多片折射单元)X射线组合折 射透镜。根据理论方法,设计并采用 LIGA 技术实 际制作了顶点曲率半径为 50 µm 的抛物面型聚甲 基丙烯酸甲酯(PMMA)材料的 X 射线长组合折射 透镜。与文献[13]采用的精密机械模压技术相比, 可以获得更小的曲率半径和更薄的折射单元中心厚 度,因此可以获得更短的焦距和更小的焦斑尺寸。 最后,在北京同步辐射装置(BSRF)的形貌站(4W, 1 A) 对实际制作的 PMMA 材料 X 射线长组合折射 透镜,在8 keV 时的聚焦性能进行了实际测试。

2 薄透镜近似

在 X 射线波段,透镜材料的复折射率可以表示

为 $n=1-\delta+i\beta$,其实部 $(1-\delta)$ 代表折射,虚部 β 代表吸收。图1所示为抛物面型X射线组合折射透镜的双凹折射单元,面型函数为 $r^2=2Rz$ 。R为抛物面顶点处的曲率半径,d为折射单元中心厚度, $L/2为抛物面开口深度。D(r)=d+r^2/R为折射单$ 元有效口径内任意点处透镜材料的厚度函数^[14]。由于折射单元的厚度尺寸远小于其焦距,该折射单元可以看做一衍射屏,衍射屏函数<math>H(r)由代表衍 射的相位变换系数 $\tau(r)$ 与代表吸收的衰减系数 $A(r)来表示, 有 H(r)=\tau(r)A(r)^{[15]}, 式中$

$$\tau(r) = \exp\left[i\frac{2\pi}{\lambda}(1-\delta)D(r) + i\frac{2\pi}{\lambda}L\right] = \\ \exp\left[i\frac{2\pi}{\lambda}(L+d-\delta d)\right]\exp\left(-i\frac{2\pi\delta r^{2}}{\lambda R}\right), \quad (1)$$

$$A(r) = \exp\left[-\frac{4\pi\beta D(r)}{\lambda}\right] = \\ \exp\left(-\frac{4\pi\beta d}{\lambda}\right)\exp\left(-\frac{4\pi\beta r^{2}}{\lambda R}\right). \quad (2)$$

图 1 抛物面型双凹折射单元

Fig. 1 Double-concave lens element with parabolic shape

对于由 N 个上述折射单元紧密排列在一起构 成的 X 射线组合折射透镜来说,若考虑组合折射透 镜对光线的作用只是改变光线的方向而没有改变光 线的位置,则整个 X 射线组合折射透镜可以被看作 薄透镜,进而单色光波透过 X 射线组合折射透镜后 在其后端出射平面上的复振幅分布为 $U_0(r) =$ $H^N(r) = T(r)\eta(r)$,式中 $T(r) = A^N(r),\eta(r) =$ $\tau^N(r)$,分别表示 X 射线组合折射透镜的整体吸收 系数与整体相位变换系数。对于本文所讨论的 X 射线组合折射透镜,整个系统具有旋转对称性,在极 坐标系下,由基尔霍夫衍射积分,像空间任意一点的 复振幅分布可以表示为^[15,16]

$$U(p,z) = \int_{0}^{\infty} T(r) \eta(r) \times \exp\left(i\frac{\pi r^{2}}{\lambda z}\right) J_{0}\left(\frac{2\pi}{\lambda z}rp\right) r dr = C \int_{0}^{\infty} \exp\left(-\frac{4\pi\beta Nr^{2}}{\lambda R}\right) \times \exp\left[i\frac{\pi r^{2}}{\lambda}\left(\frac{1}{z}-\frac{2\delta N}{R}\right)\right] J_{0}\left(\frac{2\pi}{\lambda z}rp\right) r dr, \qquad (3)$$

式中复常数 $C = \exp(-4\pi\beta dN/\lambda) \exp[i2\pi/\lambda(L+$

 $d - \delta d$) N], J₀(x) 表示零阶贝塞尔函数。经推导, 可 得焦面处[即 $z = f = R/(2N\delta)$]的光强分布为

$$I(p) = I(0) \exp\left(-\frac{2N\pi\delta^2}{\lambda R\beta}p^2\right), \qquad (4)$$

式中 p 为焦面处横向极坐标。可知在焦点处光强的横向分布为高斯分布,用半峰全宽来表征焦斑的大小,可得焦斑尺寸 $\Delta p = \sqrt{2 \ln 2/\pi} \sqrt{\lambda R/N} \beta \delta$ 。

当 X 射线组合折射透镜被用于聚焦时,还应该 考虑其聚焦效率 E 和焦点的强度增益 G。聚焦效 率 E 是指从 X 射线组合折射透镜射出的 X 射线束 的有效半径与焦点有效半径的比值,焦点的强度增 益 G 是指使用 X 射线组合折射透镜与不使用任何 聚焦元件相比较所获得的强度增益。对于旋转轴对 称系统,光束的有效半径用归一化至光束界面中心 点光强而得到的等效半径描述为

$$\pi r_{\rm eff}^2 I(0) = \int_0^\infty I(r) 2\pi r \mathrm{d}r.$$
 (5)

从 X 射线组合折射透镜射出光束的光强分布 *I*(*r*)=*T*²(*r*),焦点处的光强分布由(4)式决定。经 过计算,刚射出 X 射线组合折射透镜的光束有效半 径 *r*es与焦点处光束有效半径 *r*ef分别为

$$r_{\rm es} = \sqrt{\lambda R / (8N\pi\beta)}, \quad r_{\rm ef} = \frac{1}{\delta} \sqrt{\lambda R \beta / (2N\pi)}.$$
(6)

聚焦效率 E 和强度增益 G 分别为 $E = r_{\rm es}/r_{\rm ef} = \delta/2\beta, \quad G = T^2(0) (r_{\rm es}/r_{\rm ef})^2 = \exp(-8N\pi\beta d/\lambda)\delta^2/(4\beta^2).$ (7)

3 传播矩阵

当 X 射线组合折射透镜的长度与其焦距可以 相比拟时,光线通过 X 射线组合折射透镜,不仅要 考虑光线方向的改变,还要考虑光线位置的改变。 因为 X 射线的波长远远小于组合折射透镜的横向 尺寸,所以几何光学方法在此是适用的。用矩阵光 学的方法来研究 X 射线组合折射透镜比较方便,下 面从理论上推导 X 射线组合折射透镜的传播矩阵。

图 2 是 X 射线组合折射透镜的结构简图,它由 N 个如图 1 所示的折射单元组成。考察光线从起 始面 P_1 传播至参考面 P 的变换矩阵 T。单个折射 单元的变换矩阵为 $T_s = L_1 \cdot R_2 \cdot D \cdot R_1 \cdot L_1$,其中 L_1 代 表光线从单个折射单元开口平面传播至抛物面型折 射面的传输矩阵, R_1 代表第一个折射面的折射矩 阵,D 代表两个折射面之间的传输矩阵, R_2 代表第 二个折射面的折射矩阵。根据矩阵光学基本理论, 以上各光学变换矩阵可分别表示为

图 2 X 射线组合折射透镜的结构简图 Fig. 2 Scheme of a compound refractive X-ray lens with parabolic shape

$$\boldsymbol{L}_{1} = \begin{bmatrix} 1 & L/2 \\ 0 & 1 \end{bmatrix}, \boldsymbol{R}_{1} = \begin{bmatrix} 1 & 0 \\ -\delta/[(1-\delta)R] & 1/[1-\delta] \end{bmatrix}, \boldsymbol{D} = \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix}, \boldsymbol{R}_{2} = \begin{bmatrix} 1 & 0 \\ -\delta/R & 1-\delta \end{bmatrix}.$$
(8)

$$\mathbf{T}_{s} = \begin{bmatrix} 1 - \frac{L}{R}\delta - \frac{\delta}{1-\delta} \cdot \frac{d}{R} + \frac{L}{2R} \cdot \frac{d}{R} \cdot \frac{\delta^{2}}{1-\delta} & L + \frac{d}{1-\delta} \left(1 - \frac{L}{R}\delta\right) - \frac{\delta L^{2}}{4R} \left(2 - \frac{\delta}{1-\delta} \cdot \frac{d}{R}\right) \\ - \frac{\delta}{R} \left(2 - \frac{\delta}{1-\delta} \cdot \frac{d}{R}\right) & 1 - \frac{L}{R}\delta - \frac{\delta}{1-\delta} \cdot \frac{d}{R} + \frac{L}{2R} \cdot \frac{d}{R} \cdot \frac{\delta^{2}}{1-\delta} \end{bmatrix}.$$
(9)

则根据矩阵理论中的西尔维斯特定理^[17],整个 X 射线组合折射透镜的传播矩阵为

 这里焦距是以 X 射线组合折射透镜的后端面 P₂ 为起点计算的。(11)式即为任意长度(任意折射 单元个数)X 射线组合折射透镜焦距的精确表达式。

4 X射线长组合折射透镜

为了求得 X 射线长组合折射透镜实际光斑大 小、光束有效半径、强度增益等性能参数的理论公 式,必须知道 X 射线组合折射透镜后端面 P₂上的 复振幅分布。对于 X 射线长组合折射透镜,若不考 虑像差,认为从 X 射线组合折射透镜出射的光束依 然是球面波,在焦点处各光线理想地汇聚于一点,则 计算基尔霍夫衍射积分公式(3)式时,代表相位变换 的项消失。这时,焦点处的光强分布只与 P₂ 截面 上的吸收系数分布 T(r)有关,即

$$I(p) = C_1 \left| \int_{0}^{\infty} T(r) J_0 \left(\frac{2\pi}{\lambda f} r p \right) r dr \right|^2.$$
(12)

式中 C₁ 为一常数。在 X 射线组合折射透镜内部光 线不是沿直线行进的,在光线路径 k 上积分得

 $T(r) = \sqrt{ds_{in}/ds_{out}} \exp\left[-\frac{4\pi}{\lambda}\int \beta(k) dk\right], \quad (13)$ 式中 $ds_{in}/ds_{out} = 2\pi r_N dr_N/(2\pi r dr)$ 。 (13)式等号后

的第一部分表示 P₁ 截面与 P₂ 截面上两个小环带 的面积之比。这里假设空气隙对 X 射线的吸收没 有贡献,所以只要把光线在各折射单元内的路径 k_j 累加起来即可计算其吸收。为了计算上的方便,已 知 P₂ 面上的坐标 r₁=r,根据光路可逆原理与矩阵 光学知识

 $\begin{bmatrix} r_j \\ \theta_j \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{j-1} \begin{bmatrix} r \\ \theta \end{bmatrix}, \quad j = 1, 2, 3 \cdots (14)$ 式中 $r_1 = r, \theta \approx r/f, f \equiv (11)$ 式决定, $A, B, C, D \equiv (9)$ 式决定。由图 2 可知 $y_j = r_j + \frac{L}{2} \theta_j,$ 推导得

$$y_{j} = r \cdot M_{j},$$

$$M_{j} =$$

$$\left(1 + \frac{L}{2f}\right)U_{j-1}(q) + \left(\frac{B}{f} + \frac{LC}{2} - A - \frac{LA}{2f}\right)U_{j-2}(q),$$

$$\int \beta(k) dk = \beta \sum_{j=1}^{N} k_{j} =$$

$$\beta \sum_{j=1}^{N} \left(d + \frac{y_{j}^{2}}{R}\right) = \beta \left(Nd + \frac{r^{2}}{R} \sum_{j=1}^{N} M_{j}^{2}\right).$$
(15)

由(13)式和(15)式可得

$$T(r) = T_0 \left| M_N \right| \exp\left(-\frac{4\pi\beta\mu}{\lambda R}r^2\right), \quad (16)$$

式中 $T_0 = \exp(-4\pi\beta dN/\lambda), \mu = \sum_{j=1}^N M_j^2,$ 参数 μ 在物

理上起的作用类似于薄透镜中的 N。将(16)式代入(12)式,计算得到焦点处的光强分布为

$$I(p) = I(0) \exp\left(-\frac{\pi R}{2\beta \lambda \mu f^2} p^2\right).$$
(17)

采用与第2节类似的方法,可求得X射线长组 合折射透镜的焦斑尺寸、有效光束半径、聚焦效率、 强度增益为

$$\Delta p = 2\sqrt{\frac{2\ln 2}{\pi}} f \sqrt{\frac{\lambda\beta\mu}{R}}, \qquad (18)$$

$$r_{\rm es} = \sqrt{\frac{\lambda R}{8\mu \ \pi\beta}}, \quad r_{\rm ef} = f \sqrt{\frac{2\beta \lambda \mu}{\pi R}}, \quad (19)$$

$$E = \frac{r_{\rm es}}{r_{\rm ef}} = \frac{R}{4\mu \beta f},$$

$$G = \exp\left(-\frac{8\pi\beta dN}{\lambda}\right) |M_N|^2 \frac{R^2}{16\mu^2\beta^2 f^2}.$$
 (20)

5 结果与讨论

5.1 模拟计算结果

考虑 X 射线组合折射透镜的材料特性要求和 制作技术可行性,对 PMMA 材料、硅(Si)材料和铝 (Al)材料 X 射线组合折射透镜的具体结构参数进 行设计。结果如下: 抛物 面顶点曲率半径 R =200 μ m,开口深度 $L/2 = 200 \ \mu$ m,折射单元中心厚 度 $d = 10 \ \mu$ m。针对工作波长为 0.15 nm 的情况,这 时光学常数 $\delta = 3.852 \times 10^{-6}$, $\beta = 8.203 \times 10^{-9}$,分 别计算了 PMMA 材料、Si 材料和 Al 材料 X 射线组 合折射透镜在薄透镜近似与长透镜两种情况下的焦 斑尺寸 Δp 、有效光束半径 r_{es} 和强度增益 G,具体结 果如表 1 所示。

随着 X 射线组合折射透镜折射单元个数逐渐 增多,其强度增益 G 逐渐减小,当强度增益 G < 1 时 X 射线组合折射透镜就失去了聚焦效果。从表 1 中 给出的理论计算结果可以看出,较之于 PMMA 材 料,Si 材料和 Al 材料 X 射线组合折射透镜都不适 宜制作得很长,相应地其聚焦的焦斑尺寸也不会很 小。因此在相同的工作条件下,PMMA 材料 X 射 线组合折射透镜可以获得更小的焦斑尺寸、即更好 的聚焦效果。此外从制作技术上来看,PMMA 材料 可以采用深度 X 射线光刻技术一次制作成型,因此 更加适合制作 X 射线组合折射透镜。在实验中,采 用深度 X 射线光刻技术在北京同步辐射装置 (BSRF)光刻站实际制作了 PMMA 材料 X 射线组 合折射透镜。

- 表 1 PMMA, Si 和 Al 材料 A 射线组合折射透镜的薄透镜近似与长透镜埋论结果比
--

Table 1	Comparison of	f thin and long	compound refractive X-ra	v lenses made of PMMA	. Si and Al
I able I	Comparison of	i tinn and iong	α compound remactive Λ is	ly lenses made of I wilvin	, Si anu Ai

M . 1	Number of lens	$\Delta p / \mu { m m}$		$r_{ m es}/\mu{ m m}$		G	
Materials	elements N	Thin lens	Long lens	Thin lens	Long lens	Thin lens	Long lens
PMMA	80	0.3026	0.3026	42.6568	41.2061	18360	18983
	120	0.2470	0.2472	34.8292	32.1304	10598	11412
	160	0.2139	0.2144	30.1629	25.9357	6117	6958
Si	10	2.0346	2.0346	27.2062	27.1794	33.2491	33.2816
	15	1.6612	1.6612	22.2137	22.1646	8.6106	8.6297
	20	1.4387	1.4387	19.2377	19.1620	2.2299	2.2387
Al	10	1.7339	1.7338	28.6570	28.6256	66.3202	66.3926
	15	1.4157	1.4157	23.3983	23.3407	19.6249	19.6732
	20	1.2260	1.2260	20.2636	20.1748	5.8072	5.8327

为了更加清晰地了解薄透镜近似下的 X 射线组 合折射透镜与 X 射线长组合折射透镜在焦斑尺寸、有 效光束半径、强度增益等方面的差异,进一步计算了 结构参数 $R=50 \ \mu m$, $L=100 \ \mu m$ 的 PMMA 材料抛物 面型 X 射线组合折射透镜,在工作波长为 0.15 nm 时 的焦斑尺寸 Δp 、有效光束半径 $r_{\rm es}$ 随折射单元个数 N 的变化曲线,具体结果如图 3 和图 4 所示。

Fig. 3 Effective aperture of focusing X-ray beam varies

lens elements

通常情况下,参数 µ≥N,因此由(19)式给出的 出射光束有效半径要小于由(6)式给出的薄透镜近 似下的出射光束有效半径,这一点从图 3 中也容易 看出。出射光束有效半径也是 X 射线组合折射透 镜后端截面上的有效孔径,表征了 X 射线组合折射 透镜的集光能力,因此图 3 说明 X 射线组合折射透 镜的实际集光能力,比应用薄透镜近似理论得出的 结果要差很多。而从图 4 中可以看出,X 射线长组 合折射透镜的焦斑尺寸与薄透镜近似下的焦斑尺寸 在折射单元个数较小时符合得很好,而当 X 射线组 合折射透镜很长时焦斑尺寸发生跳变,跳变的原因 是此时的焦距已经接近于零。

模拟计算结果表明,当 X 射线组合折射透镜中 折射单元个数较多时,其各个性能参数与薄透镜近 似下的情形有所不同,个别参数甚至有显著差异。 因此再把 X 射线组合折射透镜看作薄透镜,忽略其 厚度对其光学性能的影响已不再合适,需要采用更 精确的 X 射线长组合折射透镜的设计理论来进行 组合透镜的设计。

5.2 实验结果

根据本文方法,设计并制作了4种具有不同结构参数的抛物面型X射线长组合折射透镜,4种X 射线长组合折射透镜的材料均为PMMA,其参数如 表2所示。表2中第4个X射线长组合折射透镜的 折射单元个数N已接近极限值,即出射光束的有效 半径 r_{es}和强度增益G都已经很小,显示其已经基本 失去了聚焦效果。尽管基于薄透镜近似的X射线 组合折射透镜的设计理论设计,上述第4个X射线 长组合折射透镜仍具有良好的聚焦性能。

制作方法采用深度 X 射线光刻技术,首先用准 LIGA 技术制作满足 X 射线长组合折射透镜结构参 数的金材料厚吸收体(厚度大于 10 μm)X 射线光刻 掩模,利用该掩模采用接近式光刻方法,经过深度 X 射线光刻、显影后制成 PMMA 材料抛物面型 X 射 线长组合折射透镜。

表 2 4 种 X 射线长组合折射透镜的结构参数

Table 2 Structure parameters of 4 long compound refractive X-ray lenses made of PMMA

Lens No.	Number of lens	$R/\mu{ m m}$	$d/\mu{ m m}$	Size of compound X-ray lenses		
	elements N			length /mm	width /mm	thickness /mm
1	101	50	15	11.7	0.5	0.2
2	162	50	8	17.5	0.5	0.2
3	216	50	8	23.5	0.5	0.2
4	304	50	15	35	0.5	0.2

对上述 4 个 X 射线长组合折射透镜的聚焦性 能测试在北京同步辐射装置(BSRF)形貌站(4 W, 1 A)上进行,测试系统如图 5 所示,主要由同步辐 射高能 X 射线源、双晶单色器、PMMA 材料抛物面 型X射线长组合折射透镜、以及记录焦斑的X射线 CCD(像素尺寸11 μm)组成。宽带 X 射线束经过双 晶单色器单色化后,输出能量为8 keV 的单色 X 射 线。利用精密三维可调节光学平台,将双晶单色器、 X射线组合折射透镜和 X射线 CCD 调整为一个共 轴光学系统,X射线 CCD 可用步进电机控制沿光轴 移动。8 keV 的单色 X 射线经过 X 射线长组合折 射透镜聚焦,X射线 CCD 记录聚焦焦斑。实际测试 时储存环电子能量为 2.4 GeV, 束流强度 50~ 70 mA,单色 X 射线能量 8 keV。测试结果显示:第 1个和第2个X射线长组合折射透镜显示出了非常 明显的聚焦效果,在图 6 和图 7 中给出实测的焦斑 图像以及对其进行图像处理后的焦斑光强分布曲 线;第3个和第4个X射线长组合折射透镜没有测 到焦斑图像。

图 5 X射线长组合折射透镜测试系统简图

Fig. 5 Setup of measurement system for long compound refractive X-ray lens

图 6 所示为第 1 个 X 射线长组合折射透镜的 焦斑实测图和焦斑强度分布曲线,X 射线 CCD 的记 录距离(实测焦距)75 mm,曝光时间 6.5 s。图 7 所 示为第 2 个 X 射线长组合折射透镜的焦斑实测图 和焦斑强度分布曲线,X 射线 CCD 的记录距离(实 测焦距)50 mm,曝光时间 5 s。根据 X 射线 CCD 的 像素尺寸,得到第 1 个和第 2 个 X 射线长组合折射 透镜的聚焦焦斑尺寸分别约为 5.5 µm 和 3.3 µm。

图 6 在像距为 75 mm 处的第 1 个 X 射线长组合折射透 镜的测试结果。(a)聚焦图像;(b)焦斑强度分布曲线

Fig. 6 Results measured at the distance of 75 mm from the first long compound refractive X-ray lens.(a) focal spot; (b) intensity distribution of the

- 图 7 在像距为 50 mm 处的第 2 个 X 射线长组合折射透 镜的测试结果。(a)聚焦图像;(b)焦斑强度分布曲线
- Fig. 7 Results measured at the distance of 50 mm from the second long compound refractive X-ray lens;(a) focal spot; (b) intensity distribution of the focus

5.3 结果讨论

从图 6 和图 7 所示的测试结果可以看出,制作 的第 1 个和第 2 个 PMMA 材料抛物面型 X 射线长 组合折射透镜的实测结果显示了非常明显的聚焦效 果,并且以第 2 个 X 射线长组合折射透镜的聚焦性 能更佳,与采用 X 射线长组合折射透镜设计理论得 出的模拟计算结果基本吻合。

在实际测试中,第3个和第4个长 X 射线组合 折射透镜没有测到焦斑图像。对于第4个 X 射线 长组合折射透镜,根据 X 射线长组合折射透镜设计 理论的模拟计算结果,其折射单元个数 N 已接近极 限值,即出射光束的有效半径 res和强度增益 G 都已 经很小,显示其已经基本失去了聚焦效果,所以在实 测中测不到聚焦焦斑图像。这也在一定程度上体现 了本文介绍的 X 射线长组合折射透镜设计理论在 实际应用中的价值。对于第 3 个 X 射线长组合折 射透镜,根据长 X 射线组合折射透镜设计理论进行 模拟计算,显示其虽然 X 射线辐射损耗比较大,但 仍然具有一定的聚焦效果。分析在实测中没有得到 焦斑图像的原因,主要是在 X 射线长组合折射透镜 设计理论研究中,考虑的是理想情况,并没有计入 X 射线组合透镜表面的粗糙度对 X 射线辐射损耗的 影响。而在实际中由于组合透镜表面的粗糙度,使 得 X 射线组合折射透镜的辐射损耗进一步增大,因 此其实际所能包含的折射单元个数要比理论计算结 果更少。

6 结 论

对 X 射线长组合折射透镜的理论和实验研究 表明,X 射线长组合折射透镜设计理论可以处理任 意长度(含任意多片折射单元)X 射线组合折射透镜 的情景,获得更精确和充分的理论结果。而对基于 该理论方法设计制作的不同结构参数的 PMMA 材 料抛物面型 X 射线长组合折射透镜聚焦性能的实 验研究,也获得了非常明显的聚焦效果。为抛物面 型 X 射线长组合折射透镜在 X 射线聚焦和成像领 域的应用提供了有力的技术基础。

参考文献

- 1 A. Snigirev, V. Kohn, I. Snigireva *et al.*. A compound refractive lens for focusing high-energy X-ray [J]. *Nature*, 1996, 384(6604): 49~51
- 2 Wang Hongjian, Xiao Shali, Shi Jun *et al.*. Elliptically bent crystal spectrometer for Z - pinch plasma X-ray [J]. *Chinese J*. *Lasers*, 2009, **36**(1): 115~118

王洪建,肖沙里,施 军等.Z箍缩等离子体X射线椭圆弯晶谱 仪[J].中国激光,2009,**36**(1):115~118

3 Zhang Xingqiang, Cheng Yuanli, Wang Qi et al.. Impact of

modified main-switch on capillary discharge soft X-ray laser [J]. Chinese J. Lasers, 2009, 36(2): $324 \sim 327$

4 Liu Li, Zhu Peiping, Shu Hang et al.. Quantitative measurement in X-ray diffraction enhanced imaging [J]. Acta Optica Sinica, 2008, 28(8): 1492~1495

刘 力,朱佩平,舒 航等.X射线衍射增强成像中的定量测量 [J].光学学报,2008,28(8):1492~1495

5 Le Zichun, Liang Jingqiu, Dong Wen *et al.*. Experimental results of focusing performance for the compound high-energy X-ray refractive lenses [J]. Acta Optica Sinica, 2006, 26 (2): 317~320

乐孜纯,梁静秋,董 文等.高能 X 射线组合透镜聚焦性能的 实验结果 [J]. 光学学报, 2006, **26**(2): 317~320

- 6 B. Lengeler, C. Schroer, J. Tümmler *et al.*. Imaging by parabolic refractive lenses in the hard X-ray range [J]. J. Synchrotron Radiat., 1999, 6(6): 1153~1167
- 7 B. Cederström, R. Cahn, M. Danielsson *et al.*. Focusing hard X-rays with old LPs [J]. *Nature*, 2000, **404**(6781): 951
- 8 B. Cederström, C. Ribbingb, M. Lundqvista. Generalized prism-array lenses for hard X-rays [J]. J. Synchrotron Radiat., 2005, 12(3): 340~344
- 9 V. Aristov, M. Grigoriev, S. Kuznetsov *et al.*. X-ray refractive planar lens with minimized absorption [J]. *Appl. Phys. Lett.*, 2000, 77(24): 4058~4060
- 10 F. Pérennès, M. Matteucci, W. Jark *et al.*. Fabrication of refractive X-ray focusing lenses by deep X-ray lithography [J]. *Microelectron. Eng.*, 2005, **78-79**: 79~87
- 11 W. Jark, M. Matteucci, R. H. Menk. On the use of clessidra prism arrays in long-focal-length X-ray focusing [J]. J. Synchrotron Radiat., 2008, 15(4): 411~413
- 12 Jingqiu Liang, Zichun Le, Liangqiang Peng et al. The study on the compound X-ray refractive lens using LIGA technique [C]. SPIE, 2005, 5641: 48~55
- 13 I. I. Snigireva, V. G. Kohn, A. A. Snigirev. Hard X-ray focusing with extremely long compound refractive lens [C]. SPIE, 2004, 5539: 218~225
- 14 J. W. Goodman. Introduction to Fourier Optics [M]. New York: McGraw-Hill, 1996, 96~98
- 15 Zichun Le, Jingqiu Liang. A formulation of the performance of the compound X-ray refractive lenses [J]. J. Opt. A-Pure Appl. Opt., 2003, 5(4): 374~379
- 16 Le Zichun, Liu Kai, Liang Jingqiu. A method based on diffraction theory for predicting 3-D focusing performance of compound refractive X-ray lenses [J]. Chin. Opt. Lett., 2005, 3(3): 184~186
- M. Abramowitz, I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables [M].
 Washington D. C. : U. S. Government Printing Office, 1964. 774~778